710 research outputs found

    The Stochastic Dance of Early HIV Infection

    Get PDF
    The stochastic nature of early HIV infection is described in a series of models, each of which captures aspects of the dance of HIV during the early stages of infection. It is to this highly variable target that the immune response must respond. The adaptability of the various components of the immune response is an important aspect of the system\u27s operation, as the nature of the pathogens that the response will be required to respond to and the order in which those responses must be made cannot be known beforehand. As HIV infection has direct influence over cells responsible for the immune response, the dance predicts that the immune response will be also in a variable state of readiness and capability for this task of adaptation. The description of the stochastic dance of HIV here will use the tools of stochastic models, and for the most part, simulation. The justification for this approach is that the early stages and the development of HIV diversity require that the model to be able to describe both individual sample path and patient-to-patient variability. In addition, as early viral dynamics are best described using branching processes, the explosive growth of these models both predicts high variability and rapid response of HIV to changes in system parameters. In this paper, a basic viral growth model based on a time dependent continuous-time branching process is used to describe the growth of HIV infected cells in the macrophage and lymphocyte populations. Immigration from the reservoir population is added to the basic model to describe the incubation time distribution. This distribution is deduced directly from the modeling assumptions and the model of viral growth. A system of two branching processes, one in the infected macrophage population and one in the infected lymphocyte population is used to provide a description of the relationship between the development of HIV diversity as it relates to tropism (host cell preference). The role of the immune response to HIV and HIV infected cells is used to describe the movement of the infection from a few infected macrophages to a disease of infected CD4+ role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative; CD4+ T lymphocytes

    Thyroid Autoimmunity as a Window to Autoimmunity: An Explanation for Sex Differences in the Prevalence of Thyroid Autoimmunity

    Get PDF
    Autoimmune thyroid diseases (AITDs), predominately Graves׳ disease and Hashimoto׳s thyroiditis, comprise the most common autoimmune diseases in humans. Both have the production of anti-thyroid antibody as an important aspect and both are much more prevalent in females, being at least 10 times more common than in males. Using these two clues, a hypothesis for the initiation of thyroid autoimmunity is proposed that helps to make the case that the thyroid is one of the most sensitive sites for autoimmunity and helps account for the prevalence and the observed sex differences in AITDs and associated diseases, such as type 1 diabetes and Latent Autoimmune Diabetes in Adults (LADA). The primary mechanisms proposed involve the underlying state of inflammation as a result of the adipokines, especially leptin, TNF-α, and IL-6, and the receptors able to recognize pathogen-associated molecular patterns (PAMP׳s) and damage-associated molecular patterns (DAMP׳s) through Toll-like receptors (TLR) and others receptors present on thyrocytes. The adipokines are produced by adipose tissue, but have hormone-like and immune modulating properties. As the levels of leptin are significantly higher in females, an explanation for the sex difference in thyroid autoimmunity emerges. The ability of the thyrocytes to participate in innate immunity through the TLR provides an adjuvant-like signal and allows for the action of other agents, such as environmental factors, viruses, bacteria, and even stress to provide the initiation step to break tolerance to thyroid self-antigens. Seeing the thyroid as one of the most sensitive sites for autoimmunity, means that for many autoimmune disorders, if autoimmunity is present, it is likely to also be present in the thyroid – and that that condition in the thyroid was probably earlier. The evidence is seen in multiple autoimmune syndrome

    A neural network model of adaptively timed reinforcement learning and hippocampal dynamics

    Full text link
    A neural model is described of how adaptively timed reinforcement learning occurs. The adaptive timing circuit is suggested to exist in the hippocampus, and to involve convergence of dentate granule cells on CA3 pyramidal cells, and NMDA receptors. This circuit forms part of a model neural system for the coordinated control of recognition learning, reinforcement learning, and motor learning, whose properties clarify how an animal can learn to acquire a delayed reward. Behavioral and neural data are summarized in support of each processing stage of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus, hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are distinguished from hippocampal influences on adaptive timing of reinforcement learning. The model simulates how damage to the hippocampal formation disrupts adaptive timing, eliminates attentional blocking, and causes symptoms of medial temporal amnesia. It suggests how normal acquisition of subcortical emotional conditioning can occur after cortical ablation, even though extinction of emotional conditioning is retarded by cortical ablation. The model simulates how increasing the duration of an unconditioned stimulus increases the amplitude of emotional conditioning, but does not change adaptive timing; and how an increase in the intensity of a conditioned stimulus "speeds up the clock", but an increase in the intensity of an unconditioned stimulus does not. Computer simulations of the model fit parametric conditioning data, including a Weber law property and an inverted U property. Both primary and secondary adaptively timed conditioning are simulated, as are data concerning conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly changing ISis, partial reinforcement, and multiple stimuli that lead to time-averaging of responses. Neurobiologically testable predictions are made to facilitate further tests of the model.Air Force Office of Scientific Research (90-0175, 90-0128); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-87-16960); Office of Naval Research (N00014-91-J-4100

    Untangling the Most Probable Role for Vitamin D\u3csub\u3e3\u3c/sub\u3e in Autism

    Get PDF
    Recent studies indicate an important role for vitamin D3 in autism spectrum disorder (ASD), although its mechanism is not completely understood. The most puzzling aspect of ASD is that identical twins, who share identical DNA, do not have 100% concordance rates (∼88% for identical and ∼31% for fraternal twins). These findings provide major clues into the etiology: ASD must involve an environmental factor present in the prenatal milieu that both identical twins are not always exposed to because they do not always share it (i.e., placentas). Combined with the exponential increasing rates of ASD around the world, these observations suggest a contagious disease is probably transferred to the fetus via the placenta becoming infected by a cervical virus. Vitamin D3 boosts immune responses clearing viral infections and increases serotonin and estrogen brain levels. Here we review the different roles and untangle the most probable one vitamin D3 plays in ASD

    The hippocampus and cerebellum in adaptively timed learning, recognition, and movement

    Full text link
    The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.Air Force Office of Scientific Research (F49620-92-J-0225, F49620-86-C-0037, 90-0128); Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-92-J-1904); National Institute of Mental Health (MH-42900

    Cutaneous Malignant Melanoma Incidences Analyzed Worldwide by Skin Type over Advancing Age of Males and Females: Evidence Estrogen and Androgenic Hair are Risk Factors

    Get PDF
    We previously analyzed cutaneous malignant melanoma (CMM) incidences worldwide by sex, age, and Fitzpatrick skin type over time (1955-2007) and found only European-ancestry populations have exponential increasing incidences and about a 2-log increase in the risk between the youngest age groups (0-14 and 15-29 yr). We proposed the increasing incidence over time may be from the spread of Human Papilloma Virus (HPV) found in CMM biopsies, and that the 2-log incidence increase between the youngest age groups might be from developing androgenic hair. The increasing incidence with age may be from white hairs transmitting UV radiation to follicular melanocytes. Here we analyzed CMM incidences over the advancing age of males and females of every skin type (I-VI) worldwide. We found only European-ancestry females have a linear increase in their CMM risk while males of all races have a power function increase in their risk with advancing age. We propose the gradual loss of HPV-infected androgenic follicles with advancing age of only European-ancestry females during and after menopause significantly reduces their CMM risk compared to all males who do not have significant estrogen loss and consequent loss of androgenic hair with advancing age. All other races have females with significantly lower amounts of androgenic body hair so that its loss with advancing age is not significant. These results combined with those in the literature and our previous findings showing CMM has been increasing over time, suggests estrogen synergizes HPV infection of androgenic follicular melanocytes significantly increasing the risk for getting CMM

    Pharyngeal and Cervical Cancer Incidences Significantly Correlate with Personal UV Doses Among Whites in the United States

    Get PDF
    Because we found UV-exposed oral tissue cells have reduced DNA repair and apoptotic cell death compared with skin tissue cells, we asked if a correlation existed between personal UV dose and the incidences of oral and pharyngeal cancer in the United States. We analyzed the International Agency for Research on Cancer\u27s incidence data for oral and pharyngeal cancers by race (white and black) and sex using each state\u27s average annual personal UV dose. We refer to our data as ‘white’ rather than ‘Caucasian,’ which is a specific subgroup of whites, and ‘black’ rather than African-American because blacks from other countries around the world reside in the U.S. Most oropharyngeal carcinomas harboured human papilloma virus (HPV), so we included cervical cancer as a control for direct UV activation. We found significant correlations between increasing UV dose and pharyngeal cancer in white males (p=0.000808) and females (p=0.0031) but not in blacks. Shockingly, we also found cervical cancer in whites to significantly correlate with increasing UV dose (p=0.0154). Thus, because pharyngeal and cervical cancer correlate significantly with increasing personal UV dose in only the white population, both direct (DNA damage) and indirect (soluble factors) effects may increase the risk of HPV-associated cancer

    All Sites but Skin Cancer Incidences Analyzed Worldwide by Sex, Age, and Skin Type Over Time (1955-2007), Advancing Age, and UVB Dose Reveals Important Carcinogenic Drivers

    Get PDF
    Because we observed increasing incidences over time, advancing age, higher estrogen levels, decreasing UVB (290-315 nm) doses, or lower vitamin D3, and Human Papillomavirus hiding in immune-privileged sites of hair follicles play roles in melanoma, we wondered if the majority of cancers might have similar carcinogenic drivers. To investigate this possibility, we performed worldwide analysis of all sites but skin cancer over time (1955-2007), advancing age, and UVB doses for males and females with all skin types and ages (0-85+) and in five age groups using IARC data. To investigate Human Papillomavirus’s role, we analyzed the incidences of breast, prostate, and colon cancers in a developed country with European ancestry (New Zealand) having high amounts of androgenic hair and a developing country with Asian ancestry (India) having low amounts of androgenic hair. To potentially add epidemiology to the already established role of estrogen in cancer, we analyzed males and females in various countries around the world using the incidence of breast cancer (\u3e 70 yr.) as an established indicator of estrogen levels. The analysis reveals cancer incidences are steadily increasing over time in developed but not developing countries regardless of skin type. Only US white, but not black, breast, prostate, and colon cancer incidences in the oldest age group significantly decreased with increasing UVB dose suggesting a role for vitamin D3. The data suggests the carcinogenic drivers in many cancers are estrogen, increasing age (or reactive oxygen species), decreasing vitamin D3 levels, and persistence of Human Papillomavirus infection in immune-privileged sites

    Worldwide Cutaneous Malignant Melanoma Incidences Analyzed by Sex, Age, and Skin Type Over Time (1955–2007): Is HPV Infection of Androgenic Hair Follicular Melanocytes a Risk Factor for Developing Melanoma Exclusively in People of European-Ancestry?

    Get PDF
    The cutaneous malignant melanoma (CMM) incidence has been increasing in an exponential manner in certain populations around the world for over 7 decades. To help illuminate the etiology, we performed worldwide temporal (1955–2007) CMM incidence analysis by sex, age (0–14, 15–29, 30–49, 50–69, 70–85+), and skin type on 6 continents using data from the International Agency for Research on Cancer. We observe an exponential increase in the CMM incidence over time and an increase of about 2 orders of magnitude between age groups 0–14 and 15–29 exclusively in European-ancestry populations around the world independent of skin type (I–III or III–IV). Other populations like the Chinese (III-IV) had much lower CMM incidences that either remained stable or temporally decreased but did not display a dramatic increase between the youngest age groups. The dramatic increase in the incidence between the youngest age groups found only in European-ancestry populations suggests one of the most important risk factors for CMM may be developing androgenic hair, the occurrence of which appears to correlate with the distribution of CMM over male and female body sites. Besides that potential new risk factor, the increasing CMM incidence with increasing age, known not to be from cumulative UV doses, may be associated with age-related changes to skin, i.e., thinning epidermis causing lower vitamin D3 levels, and hair, i.e., whitening from higher reactive oxygen species. The temporal exponential increasing CMM incidence in European-ancestry populations may be due to Human Papilloma Virus infection of follicular hair melanocytes, found in CMM biopsies

    Cutaneous Malignant Melanoma Incidences Analyzed Worldwide by Sex, Age, and Skin Type over Personal Ultraviolet-B Dose Shows No Role for Sunburn but Implies One for Vitamin D\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    Because the incidence of cutaneous malignant melanoma (CMM) was reported to increase with increasing terrestrial UVR (290–400 nm) doses in the US back in 1975 and a recent publication showed no association exists with UVR exposure at all, we set out to fully elucidate the role of UVR in CMM. To achieve this goal, we analyzed the CMM incidences over latitude and estimated the average personal UVR dose in the US and numerous countries (\u3e 50) on 5 continents around the world. Using data from the International Agency for Research on Cancer in 2005, we performed worldwide analysis of CMM over UVR dose by sex, age group (0–14, 15–29, 30–49, 50–69, 70–85+) and Fitzpatrick skin types I-VI. Surprisingly, increasing UVR doses, which represent erythemally-weighted doses comprised primarily of UVB (290–315 nm) radiation, did not significantly correlate with increasing CMM incidence for people with any skin type anywhere in the world. Paradoxically, we found significant correlations between increasing CMM and decreasing UVB dose in Europeans with skin types I-IV. Both Europeans and Americans in some age groups have significant increasing CMM incidences with decreasing UVB dose, which shows UVB is not the main driver in CMM and suggests a possible role for lower cutaneous vitamin D3 levels and UVA (315–400 nm) radiation. CMM may be initiated or promoted by UVA radiation because people are exposed to it indoors through windows and outdoors through some sunscreen formulations. Thus, our findings may explain why some broad-spectrum sunscreen formulations do not protect against getting CM
    • …
    corecore